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Internal electrohydrodynamic instability and mixing of 
fluids with orthogonal field and conductivity gradients 
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Massachusetts Institute of Technology, Cambridge 

(Received 8 April 1975 and in revised form 30 August 1975) 

The interface between two miscible fluids which have identical mechanical 
properties but disparate electrical conductivities and are stressed by an equili- 
brium tangential electric field is studied experimentally and theoretically. A 
bulk-coupled electrohydrodynamic instability associated with the diffusive 
distribution of fluid conductivity at the interface is experimentally observed. 

The configuration is modelled using a layer of exponentially varying conduc- 
tivity spliced on each surface to a constant-conductivity fluid half-space. Over- 
stable (propagating) modes are discovered and characterized in terms of the 
complex growth rate and fastest growing wavenumber, with the conductivity 
ratio and an inertia-viscosity time-constant ratio as parameters. In  the low 
inertia limit, growth rates are governed by the electric-viscous time 7 = r/cE2. 
Instability is found also with the layer of varying conductivity bounded by rigid 
equipotential walls. A physical mechanism leading to theoretically determined 
fluid streamlines in the form of propagating cells is described. 

At relatively high electric fields, large-scale mixing of the fluid components is 
observed. Photocell measurements of distributions of average fluid properties 
demonstrate evolution in time on a scale determined by 7. 

1. Experimental motivation 
Experimental studies involving the application of an electric field tangential 

to the interface between two miscible fluids of identical mechanical properties 
but disparate electrical conductivities lead to unexpected phenomena. Figure 1 
shows a drawing of an electrohydrodynamic flow cell. Microscope slides allow 
optical projection through the cell from a tungsten-arc point light source. Two 
fluids enter via inlet tubes at  the top and bottom respectively. Removal via the 
outlet tubes at the sides allows formation of a clean horizontal interface midway 
up the cell. An electric field is applied tangential to the interface by means of 
wire electrodes running vertically along the sides. 

The liquid used is Mazola corn oil. Pure corn oil enters through the bottom 
inlet tube. That entering at the top inlet tube is doped in electrical conductivity 
with anti-static fluid and dyed with red dye. Depending upon the experiment 
to be performed, the upper fluid is used straight (as doped and dyed) or diluted 
with pure corn oil to & concentration by volume. The various physical properties 
are listed in table 1. 
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FIQURE 1. Experimental flow cell and optical configuration. A horizontal interface between 
fluid components is formed midway up the cell. Wire electrodes impose a tangential 
electric field. 

Density 
Viscosity q = 6 ~ 1 0 - ~ k g / m s  
Permittivity 
Conductivity 

p = 0.992 x lo3 kg/m3 

E = 3.1 c,, = 2.74 x 10-l' faritd/m 

Pure CT = 4.05 x 10-l1 mho/m 
-1- 2 o  mixture CT = 1.05 x mho/m 
Straight doped 
and dyed CT = 8.1 x mho/m 

TABLE 1. Corn-oil properties 

Samples of still photographs obtained by projecting the image of the cell 
directly onto the shutter of a 35 mm camera are shown in figure 2 (plate 1). 
The lower, clear fluid is pure corn oil, while the upper, dark fluid is the & mix- 
ture of doped and red-dyed corn oil. The conductivity ratio in this caBe is 
R = 25.9. For each of the three sequences shown, a clean interface is formed, 
then allowed to diffuse for a known time before application of the field. In  the 
first two sequences (E = 2.42 x lo4 V/m and E = 1.21 x lo4 V/m respectively) 
the interface has diffused for 1 h, while in the last sequence (E = 1.82 x 104 V/m) 
it has diffused for 4 h. Thus the last sequence begins with an interface structure 
twice as broad as the first two. Photographs were taken at  the indicated times 
after the instant the electrical source was switched on. 

In  each sequence, note the appearance, on the scale of the interface structure, 
of slanted fronts, originating at  the outer edges and propagating towards the 
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centre. The distance between fronts in the last sequence is double the distance 
between fronts for the first two. The slant angles of fronts vary between photo- 
graphs, but lie in the range 20"-30". 

The respective time intervals between photographs are scaled to l /E2 .  Note 
that, with this scaling, the sequence of events appears to be quite similar for the 
two sequences with identically diffuse initial interfaces. In  real time, the second 
sequence evolves over a period four times as long as the first. 

The theory to follow is aimed a t  a basic understanding of the phenomenon 
observed in figure 2: an electrohydrodynamic instability on the scale of the 
structure of the interface between fluid components of differing conductivities 
experiencing a tangential electric field. 

2. High field mixing 
The photographs shown in figure 2 all correspond to relatively low values 

of the electric field. For higher values ( E  N 105 V/m and higher), the inter- 
face curves, buckles and folds over on itself. In  static equilibrium, there is no 
electrical force density, The rotational character of the electric force density 
created by the instability is evident as fluid components roll and swirl into one 
another. 

Figure 3 (plate 1)  demonstrates the sort of mixing attainable in relatively 
short times at relatively high values of the electric field. The fluid orientation 
has been reversed here, with the pure corn oil on top. Straight dyed and doped 
corn oil is used in the lower part of the cell, yielding a conductivity ratio of 
R = 200. Motions of the kind shown here are of obvious interest with regard to 
practical mixing operations (Uhl & Gray 1966). An important consideration in 
the large-scale processes shown is viscous drag due to the proximity of the front 
and back cell walls. 

No simple theory can account for the complex and nonlinear processes ob- 
served at these high field values. However it is possible to determine scaling 
laws for average mixture properties as functions of position. 

A quantitative description of the mixing process exemplified by figure 3 is 
accomplished with the use of a photocell, providing an electrical signal with 
magnitude directly proportional to the intensity of light incident on a narrow 
slit. The photocell is positioned behind the mixing cell, so that the intensity of 
light from the tungsten-arc source depends upon the optical properties of fluid 
a t  a given level in the cell. 

The Pertical positioning is such that light incident on the photocell slit has 
passed through the experimental cell just above the interface. As dark fluid is 
swept up into the region above the initial interface, the light intensity incident 
on the photocell slit is diminished, and a chart recorder sensing photocell output 
provides a time history of the mixing process at one vertical position in the cell. 
(Variations in the horizontal direction are automatically averaged out by this 
method.) 

Figme 4. shows plots of light intensity as a function of time for six different 
values of  1 he electric field. The time scale here is normalized using the electric- 
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FIGURE 4. Relative light intensity through experimental cell 218. time for various values 
of electric field. Time scale is normalized to 7 = T / C E ~ .  High-field mixing processes scale 
in time with r ,  provided inertia is negligible. 0-0, 0.606 x 1@ V/m; V-V, 1.21 x 
106v/m;~--c] ,  1.92xlWV/m;A-A, 2.42xl@V/m; x - x ,  344xl@V/m; 0-0, 
6.06 x l@ VJm. 

viscous time T = q/eE2. This time will assume prime importance in the theory to 
follow. It is evident that the mixing process evolves on the scale of the cell over 
times of order 10%. The point here is that, except for the highest value of the 
electric field, the various normalized curves are reasonably close to one another, 
even though the run a t  0.606 x lo5 V/m evolved in real time over a period 40 
times as long as the run at 3.84 x lo5 V/m. The scaling of the mixing process 
with T is thus experimentally confirmed. At the highest field value ( E  = 6.06 x 
lo5 V/m) inertia apparently plays a role in the electrohydrodynamic process, 
with growth occurring less rapidly than would be predicted on the basis of a 
purely viscous flow. 

Further quantitative data are obtained in a second photocell experiment, 
this time allowing a determination of the fluid distribution over the vertical 
length of the cell. The vertical position of the photocell slit may be varied over 
a, range of 2 cm on either side of the initial fluid interface. An electrical signal 
corresponding to the cell position drives one scale of an x,y plotter, with the 
light-intensity signal driving the second scale. Thus, by running the photocell 
over the mixing cell's length, a curve describing the fluid-component distribution 
is obtained. The & mixture is used for the dark fluid because, for dilutions of 
& and less, the light intensity through the cell is directly proportional to the 
percentage of clear corn oil in the mixture. 

Because the flows involved are viscosity dominated, i t  is possible to apply an 
electric field for a given time, switch off the field, take a photocell distribution 
run, and switch the field back on to continue the experiment. (Lengths'small 
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FIGURE 5. Relative light intensity through experimental cell V8.  cell position for various 
times. Times are normalized to T = v/cEE2. Similarity of evolution for different values of 
electric field again confirms scaling with T .  (a) E = 0.606 x 105 V/m. ( b )  E = 1.82 x 105 V/m. 
(c) E = 6.06 x 1P V/m. 

enough for diffusional processes to alter the distribution during the time the field 
is off are of no concern here.) The fineness with which the distribution may be 
determined is limited by the photocell slit width (1.6 mm). 

Figure 5 shows the evolution of fluid-component distributions for values of 
the electric field varying by a factor of 10. In  each case, distributions are deter- 
mined at three times in addition to the initial clean interface distribution. The 
times at which plots are made are chosen such that t/7 takes on the same three 
values in each case. Thus the run with the lowest field spans a time period 104 
times as long as that with the highest field. 

22 F L M  73 
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Again, strong experimental evidence of scaling of the mixing process with T 

is provided by the similarities of the evolution for various values of the electric 
field. At the highest field value, some details of the plots have a somewhat 
altered character, possibly the result of inertial effects beginning to have a notice- 
able influence on the motions. 

3. Surface-coupled model 
Surface-coupled phenomena, i.e. those which may be described in terms of 

interfacial motions, driven by an electric surface force density and resulting in 
time and space evolution of its position, magnitude, and direction, account for 
a wide variety of interactions involving electric fields in multiproperty systems. 
Accumulation of surface charge at interface saliencies often leads to a surface 
force which tends to cause growth of perturbation displacements from a static 
equilibrium (Melcher 1972). Such instability, in its nonlinear stages, leads to 
mixing of fluid components initially separated by a flat interface. 

It is natural to think of the experiment described in terms of a surface-coupled 
model. An interface between two fluid layers of differing conductivities va and 
rb, but identical mechanical properties experiences a uniform equilibrium electric 
field E,, initially tangential to the interface. 

This problem is a special case of one considered by Melcher & Schwarz (1968). 
With all fluid properties continuous across the interface except conductivity, 
equation (34) of that paper reduces to two roots: 

s =  0 or s =  -vk2. (1) 

In  this limit, there is no electromechanical coupling at the interface, and these 
roots represent viscous decay only. The root s = 0 occurs because there is no 
restoring force in the face of perturbation interface displacements. The point 
to be emphasized here is the lack of coupling, and hence the lack of instability 
predicted by a linear surface-coupled model. Any instability based on a con- 
ductivity-jump model must arise from nonlinear coupling terms. 

4. A bulk-coupled layer of varying conductivity: general equations 
A surface-coupled model, linearized or not, clearly cannot account for effects 

occurring on the scale of the thickness of the interface itself. Figure 2 shows a 
process which occurs on a scale comparable to that which describes the diffusive 
distribution of conductivity at the junction between fluid layers. In  the theory 
to follow, the aim is to relax the restriction that the region over which conduc- 
tivity variation occurs be thin compared with lengths describing instability 
dynamics. The interaction, then, is bulk-coupled, with fluid properties modelled 
as varying in a continuous manner and fluid motions as driven by the volume 
force density, caused by fluid deformations. 

Situations involving a junction between two miscible fluids of differing con- 
ductivities will, in general, involve diffusion as an ion transport mechanism, 
and hence as a governing mechanism in setting up the conductivity distribution. 
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FIGURE 6.  Varying-conductivity fluid layer experiencing uniform equilibrium 
tangential field E, i,. 
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It is not meaningful to consider questions of electrohydrodynamic stability by 
assuming perturbations from an equilibrium state if, owing to diffusion, the 
equilibrium is evolving at a rate comparable to that of the perturbation dynamics. 
If, however, diffusion times are long compared with times describing instability 
dynamics, we may describe the junction by an equilibrium conductivity distri- 
bution, itself evolving slowly with time, and subject to electrohydrodynamic 
instability as modelled in a situation of static equilibrium. This is now assumed. 

A layer of fluid, with equilibrium conductivity distribution uo(x),  extends 
from x = 0 to x = A and experiences a uniform equilibrium tangential electric 
field E, i, as shown in figure 6. 

In  the face of fluid motions, the conductivity distribution is altered, with 
diffusion always acting to smooth the distribution a t  any one instant. The same 
basic assumption regarding the relative size of time scales for perturbation 
dynamics and diffusion times leads to a model in which each elemental volume 
of fluid of fixed identity retains a constant conductivity u(x, y, x ,  t )  as it moves 
with the fluid velocity v: 

a+ + V. va = 0. (2) 

Said another way, in terms of an effective conductivity diffusion coefficient 
K , ~ ~  and a characteristic dynamic length 1 and velocity U ,  it  is asumed that the 
PBclet number Ul/K,,, 9 I (Levich 1962). 

Accumulation of a free charge density pp in regions of conductivity variation 
is described by the equation of conservation of charge and Gauss’ Law: 

v . [VE + p , ~ ]  + app/at = 0, (3) 

V .  EE = p,, (4) 

where E is the electric field intensity and E the fluid permittivity. Charge relaxa- 
tion in the pure corn oil occurs on a time scale c / g  = 0.68 s. Of most concern 
here are fluid motions on time scales long compared with E / C ,  and hence instan- 
taneous charge relaxation is assumed. That is, in terms of the characteristic 
length 1 and velocity U ,  the electric Reynolds number sU/al< 1 (Woodson & 
Melcher 1968), and the term +,/at + v. Vp, is neglected in combining (3) and (4): 

(g/e)pr+E. V a  = 0. ( 5 )  

It has been assumed here that E = constant and the fluid is incompressible: 

v . v = o .  (6) 
22-2 
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Equation (6) is satisfied by expressing v in terms of a stream function $: 

J .  P. Hoburg and J .  R. Melcher 

v = - V  x ig$(x,z,t). (7) 

Because the quasi-static electric field is curl free, it  may be expressed in 
terms of an electric potential 0: 

Poisson's equation may be derived from (4) and ( 8 ) :  

E =  -V@. ( 8 )  

V2@ = -pp/€. (9) 

Finally, the effect of the electric force density pp E on fluid motions is expressed 
by the Navier-Stokes equation: 

p[av/at + V .  VV] + vp = ~ V Z V  + p f  E. (10) 
In equilibrium, the fluid is static and charge free. Small amplitude perturba- 

tions with dependence e+ikz are governed by linearized versions of ( 2 ) ,  (5 ) ,  (9) 
and the curl of (10) in terms of perturbation complex amplitudes 8, $, pf and $ 
respectively : 

s8-ilc$(Duo) = 0,  (11) 

(go/€) p f  - ikEo8 - (DB) (Duo) = 0, (12) 

(0'- k2)  6 = - pf/C, (13) 

sp[D2 - k2] $ = 7[D2 - P I 2  $ - EoDpf, (14) 
where D = d/dx. 

Eliminating 8, Pf and $ yields one homogeneous equation in $: 

As is characteristic of bulk-coupled models, (15) has space-varying coefficients. 
For a general equilibrium conductivity distribution uo(x), a numerical integra- 
tion procedure is required to determine a solution. 

5. Exponential uo(x) 
There is one non-trivial distribution for which (15) has constant coefficients, i.e. 

uO(x) = ub(ua/ub)x'A. (16) 

Here ua and u b  represent the known values of the conductivity a t  the upper and 
lower surfaces of the layer, respectively, and the variation has an exponential 
character across the layer. For this distribution, the factor involving uo(x) in 
(15) takes on a value independent of x: 

where 

uo(x)/Duo(x) = - A/ln R, 

R = ub/uu. 

Substitution of (17) into (15) and assumption of solutions of the form e y x  

(19) 

gives a sixth-order normalized equation in y :  

[yr2 - k'2] [(f2 - - dT/7) (yt2 - y' In R - kr2 )  - kt2  s'-ly' In R] = 0, 
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where 
Ic' zs kA, y' 3 yA, sf = sr, T = pAz/q,  r = q/eE;. 

Two of the six solutions y' = y;, . . . , yi  to (1 9) are y' = _+ k'. For any given wave- 
number k', growth rate s', and parameters T/T and R, it is straightforward to 
solve the remaining quartic. 

With all relations in terms of normalized perturbation complex amplitudes, 
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(20) I 6' = $/E,A, 8' = %-/A, 
S' = SleEf, 9' = @/sEf, J' = J/ga E,  

$' = @/A2, 
A h  A h  

(where S represents fluid stress), the potential distribution is expressed as a 
linear combination of solutions of the form eya:  

The various electrical and mechanical perturbation complex amplitudes 
within the layer evaluated in matrix form at the a and b surfaces are 

where 
V = H A ,  S = G A ,  

A =  

and H and G are 6 x 6 matrices, with entries defined by 
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[yk2 + k’2] [y: - y; In R - K2], S’ G -- 
4n - k’2 1nR (25.i) 

G5n. = - yAexp y;, G6n = -By;. (25 k, Z) 
Finally, a set of transfer relations may be written down to characterize the 

layer in terms of perturbation complex amplitudes at its surfaces. Equations 
(22) and (23) combine to give 

S = QV, Q = GH-l .  (261, (37) 

6. Layer spliced to bounding half-spaces 
Provided that the region of conductivity variation is thin and perturbation 

wavelengths are short compared with the thicknesses of the fluid regions bound- 
ing the layer of varying conductivity, these can be modelled as half-spaces. 
Because there is no equilibrium conductivity gradient outside the layer, no 
perturbation charge is induced by fluid motions in the bounding regions [see 
(11) and (12)]. Thus the perturbation fluid dynamics of the bounding regions 
are governed by (14) with Pf = 0. Conditions are imposed as x+ 00, then, by 
discarding growing solutions. The result is a set of transfer relations for the 
bounding half-spaces, with a and b referring to boundaries a t  x = A and x = 0 
respectively : 

where 

- (q’ + k’)  1 ’ P “ =  [ 

i ( q ‘ - k ’ )  q’ +k‘  1 ’ P b =  [ 

- q’k’-l(k’ +a’) i(V - q’) 
i(q’- k‘) 

q’k’-l(k’ + a ’ )  i(k’ - q’)  

q‘ = (k‘2 + s ’ T / ~ ) i  (Re q‘ > 0) 

and the relations are written assuming k‘ > 0. 
Combination of (26) and (28)-(31) yields 

FV = 0,  
where V is defined by (24) and 

F =  
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FIGURE 7. Zeros and branch cut of the complex function D(s‘) for k’ = 1, TIT = 1, 
R = 2.72. The branch cut characterizes viscous decay in the bounding half-spaces. An 
infinite set of zeros in the right half-plane corresponds to growing, propagating internal 
modes. 

For non-trivial solutions to (33), the dispersion relation takes the form 

D I detF = 0. (34) 

For given k‘, T/T and R, a search must be carried out in the complex s‘ plane 
for values of s’ where (34) is satisfied. In  a region near a zero of D(s‘), provided 
that this function is analytic, the zero may be approached by changing s’ by 
(Betchov & Criminale 1967) 

where h < 1. To determine [dD/ds‘],,, a small exploratory step 8s‘ some fraction 
of the previous As’ is taken: 

where p < 1.  Then 
8s’ = PAS’, (36) 

(37) 
D(s’+ 8s‘) - D(s’) 

6s’ [dD/d~’] , ,  z 

Normally the parameters are set at  p = 0.1 and h = 1, but when there is diffi- 
culty with convergence h is reset to 0.5. 

The function D(s’) has complex-conjugate symmetry about the real s’ axis. 
That is, the value of D a t  a point s i  + is; is the complex conjugate of the value 
at  the point si-is;. Thus, only a search for zeros in the upper half-plane need 
be carried out. Figure 7 shows the singularities of the function D in the complex 
sr plane. The function has a branch cut, extending leftwards along the s i  axis 
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FIGURE 8. Eigenfunctions &(z/A) at k' = 1, TIT = 1, R = 2.72. (a) First eigenfunction: 
S' = 0.00841 +i0*0393. ( b )  Second eigenfunction: 8' = 0.000197 +i0.00198. Higher (less 
rapidly growing) modes involve more and more points of zero slope within the layer. 

from a branch point at s' = - kt2T/r -t i0 to negative infinity. To the left of the 
branch point, in crossing the negative real axis, when s' is changed incrementally 
from s,+iS to 8,-is, the function D has a discontinuous imaginary part, i.e. 
it  jumps from D, + iD, to D, - iDi, where Di is non-zero. This non-analyticity 
traces back to the determination of q', the viscous decay number, as defined 
with (28). 

There is an infinite set of zeros (eigenfrequency solutions to (34)) in the right 
half-plane with non-zero si. Of all the zeros, the one with the largest is termed 
the first eigenfrequency, the one with the second largest s: the second eigen- 
frequency, and so on. The first eigenfrequency is found also to have the largest 
value of s;, and so on. As is characteristic of internal mode problems, there is an 
infinite set of eigenfrequencies in the right upper half-plane, a11 within a rectangu- 
lar region with corners at the first eigenfrequency and the origin. Any one 
eigenfrequency has an infinite set of eigenfrequencies between itself and the origin. 

To understand better the significance of the various eigenfrequencies, it  is 
desirable to determine the distributions of the perturbation complex amplitudes 
of physical quantities as functions of the x co-ordinate (the eigenfunctions). 
This may be accomplished as follows. 
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k' 

FIGURE 9. s:(k') (solid curves) and s,'(k') (dashed curves) for first three eigenfrequencies 
at TIT = 1, R = 2.72. Each mode has a value of k' where 8: is a maximum. For the first 
eigenfrequency, this value is termed k'*, and s;(k'*) P 8," and si(k'*) f 8:. 

Having found a value of s' where (34) is satisfied, a non-trivial column vector 
V satisfying (32) is determined by taking linear combinations of rows of F so 
as to produce zero entries everywhere below the main diagonal. Having per- 
formed such manipulations, because D = 0, the 6,6  element will become zero. 
Thus the value of @b may be arbitrarily set to 

p = 1 +io. (38) 

Then, the manipulated set of equations derived from (32) is used to determine 
the values of all the other variables in V. Equation (22) is then inverted to  
compute t>e ^corresponding A, i.e. the @A. The various physical quantities, 
$ I ,  a;, @:, J; ,  S; and SL, may then be directly computed. Figure 8 (a) shows the 
eigenfunction @ for the first eigenfrequency a t  k' = 1, T/r = 1 and R = e. 

h 



346 J. F .  Hoburg and J .  R. Melcher 

6.0 

10-4 10-2 1 102 104 

TIT 
FIGURE 10. k'* va. T/r  for various values of R. For T/r  I, k'* 

is independent of T/r and increases with R.  
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FIGURE 11. 8:" (solid curves) and a;* (dashed curves) va. T/r  for various values of R. In  
the viscous-dominated regime T/r  < 1, s y  and .;* are independent of T/r .  Non-zero 
a;* indicates propagation or overstability. 
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Real and imaginary parts (showing the distribution at two values of z spaced 
n/2k apart, or a t  two values o f t  spaced n/2si apart) are shown as functions of 
x/A across the varying-conductivity layer and one layer thickness into the half- 
spaces on either side of the layer. Figure S(b)  shows the eigenfunction $' for 
the second eigenfrequency at  k' = 1, T/r = 1 and R = e .  As would be expected, 
the most rapidly growing mode involves the least variation of physical quantities 
across the layer. Higher (less rapidly growing) modes involve more and more 
points of zero slope within the layer. 

The dependence of the first three complex eigenfrequencies on k' is described 
by figure 9. For small k' (waves long compared with the layer thickness), all 
eigenfrequencies approach zero. In  this limit, the situation approaches the 
surface-coupled model, i.e. an abrupt interface with no first-order electro- 
mechanical coupling. At the opposite extreme, for large Ic', where eigenfunctions 
vary rapidly across the layer, all eigenfrequencies approach zero asymptotically. 
At some intermediate k', the real and imaginary parts take on maximum values. 
For the same mode, the maxima of the real and imaginary parts occur at  different 
values of k'. Maxima occur at increasing values of k' for higher modes. 

At k' = k'*, Res' for the first eigenfrequency has its maximum Resf* for any 
given T/r and R. Figures 10 and 11 are plots of k'*, and si* (solid curves) and si* 
(dashed curves), respectively, as functions of T/r on a logarithmic scale for five 
values of R. For T/r  < 1, viscous effects dominate over inertia, and k'* and s'* 
are independent of T/r. Thus, if T/r  is varied in this range by varying E,, holding 
all other parameters constant, k* remains constant while s* increases quadratic- 
ally with E,. Alternatively, if T/r is varied by varying A, k* decreases as l /A 
while s* remains constant. 

For T/r 9 1, inertia plays an important role in the instability dynamics, and 
A:'* increases while si* and s;* decrease with increasing TIT. Note, however, 
that because T/r  is plotted on a logarithmic scale in figures 7 and 8 the functions 
are relatively insensitive. Thus, if E ,  is again increased, k* increases slowly, while 
s: and s: increase less rapidly than quadratically with E,. If E, is held constant 
and A increased, k* decreases less rapidly than 1/A and s) and 5; decrease. 

Finally, k*, s: and s? are relatively insensitive to R, but all three functions 
increase with R, except in one regime. For large T/r, s: first decreases, then 
increases with R. 

7. Physical mechanism 
The physical nature of the instability described here is made apparent by 

plotting velocity streamlines, as shown in figure 12. Here TIT = < 1, so 
the flow is dominated by viscous effects. Streamlines are plotted across the 
layer width and one layer thickness into each of the bounding half-spaces. The 
negative, imaginary part of s'* indicates propagation of the entire picture to 
the left. The corresponding eigenfrequency with positive imaginary part would 
have streamlines slanted to the right, with the entire picture propagating to the 
right. 

The physical mechanism responsible for overstable modes in the configuration 
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FIGTJRE 12. Fluid velocity streamlines a t  T/r  = 10-4, R = 25.9, k' = k'* = 1.641,~ '  = B'* = 
0.0640- 0.1233i. With the more conducting fluid below and the direction of streamline 
slant as shown, the slant vector K points outwards and VU,,XK points to the left, the 
direction of propagation. The mirror-image eigenfrequency, with 8;* > 0, would have 
streamlines slanting and propagating in the opposite direction. 

ub 

FIGURE 13. Physical mechanism responsible for growth and propagation. Surface charge 
accumulates a t  slanted interfaces and causes cellular fluid motions. Consequent conduc- 
tivity alteration leads to propagation. 

described may be understood with the help of figure 13. Within the region of 
varying conductivity, bounded above and below by half-spacesJ slanted layers 
of alternating low and high conductivities ga and afl are postulated. (The actual 
variation, both in the theory described by figure 12 and in the experimental 
photographs in figure 2 ,  is smooth. The dependence is discretized here as a means 
of simplifying the mechanism but retaining the essence of the interaction.) 
Application of an electric field in the horizontal direction in the leftmost layer 
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leads to surface charge accumulation at the slanted interfaces so as to yield a 
continuous normal current density. Interfaces bounded on the left by a layer of 
low conductivity and on the right by a layer of high conductivity experience an 
upward-directed shear force owing to the tangential electric field component. 
Similarly, interfaces bounded on the left by a layer of high conductivity and on 
the right by a layer of low conductivity experience a downward-directed shear 
force. The resulting cellular fluid motions alter the conductivity distribution 
by drawing in less conducting fluid from the upper half-space and more conduct- 
ing fluid from the lower half-space. This effectively propagates the slanted layer 
structure to the left, as is the case for eigenvalue solutions with si < 0. 

If rightward slanted layers are postulated at the outset, the resulting’ surface 
charge accumulation, fluid motions and conductivity alterations lead to a right- 
ward-propagating structure, corresponding to the mirror-image eigenvalue 
solutions with si > 0. 

Reversal of the direction of the equilibrium electric field does not alter the 
physical mechanism described here. The propagation direction depends only 
upon the assumed direction of slant and orientation of high and low conductivity 
regions. The maximum growth rate as a function of wavenumber is attained by 
optimizing the cell size (and resulting slant angle) with respect to the competition 
between electrically driven shearing forces and retarding viscous drag and 
inertia (if significant). 

The direction of propagation of a cell having a given slant is, in general, 
determined by the following rule: if K is defined as a vector obtained by crossing 
the direction of slant through an acute angle into the horizontal direction and 
Va,, is the gradient of the equilibrium conductivity distribution, then the cell 
propagates in the direction Va, x K. 

Of course, the exponential conductivity distribution of the viscous layer only 
approximates the diffusive distribution which actually joins the two regions of 
uniform conductivity. However a stability analysis of the sort presented is not 
expected to be sensitive to the details of this distribution. The analysis provides 
a clear indication that, in situations involving conductivity gradients normal to 
an applied electric field, internal electrohydrodynamic coupling can result in an 
instability tending to augment the conductivity diffusion process. 

8. Rigid equipotential boundaries 
To distinguish further the instability modelled above from a surface-coupled 

instability, the fluid half-spaces are removed and the varying-conductivity 
layer is bounded with rigid equipotential (in the perturbation sense) boundaries. 
In  this way, the ‘interface’ region is isolated and the dynamics are clearly 
internal to the layer. 

The boundary conditions at the layer surfaces then become simply 

v = 0. 

For non-trivial S the dispersion relation takes the form 

D’ = det Q-1 = 0. 

(39) 

(40) 
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Again, an infinite set of overstable eigenfrequencies is found. The branch cut is 
replaced by an infinite discrete set of pure real, decaying eigenfrequencies. 

The eigenfrequencies as a function of k' and eigenfunctions have forms much 
like those obt'ained with a layer bounded by half-spaces. 

9. Correspondence between experiment and theory 
Comparison of the slanted fronts experimentally observed in figure 3 with 

the cells in figure 12 requires that the photographs be turned upside down, so 
that the more conducting fluid is at  the bottom. Alternatively, the cross-product 
defined in $ 7  may be used to see that the fronts slant and propagate in the 
manner described by the theory. 

It is essential to recognize here that detailed correlation between experiment 
and theory cannot be claimed for two reasons: first, the experimental con- 
figuration is not well enough controlled, on the scale of the processes described; 
second, the detailed evolution of the instability from initia,l noise is not simply 
determined by the fastest growing wavenumber. 

There is, however, strong evidence that the experimentally observed fine- 
scale processes are explained by the physical mechanism identified by the theory. 
The slant angle of fluid streamlines in the centre of the cells in figure 12 (27") 
falls within the experimentally determined range (20"-30"). The wavenumber k 
associated with the spatial periodicity of the experimental fronts is halved when 
the interface is allowed to diffuse to double its initial thickness. This corresponds 
to k'* = L*A = one known number, dependent only on R and T/r in the theory. 

Finally, it  is possible, by starting with two different bits of experimental data 
and working back through the theory, to arrive by two different routes at  an 
estimate of the initial interface thickness. Consider the last sequence in figure 2. 
for example, in which 

E, = 1.82 x lo4 Vlm, r = q/sEi = 6.63 s, R = 25.9. 

Assuming T / r  < 1, figures 9 and 10 yield 

s:* = 0.064, s;* = 0.123, k'* = 1.641. 

Measurement of the distance between fronts in figure 2 (n) and the assumption 
that it may be identified with the fastest growing wavenumber yield 

2;rr4/k* = 3.9 x 10-3 m, 

which implies 4 = m. Measurement of the velocity of the front from figures 
2(m)-(n)-(0) and the assumption that it may be identified with the phase 

sz*/k* yield s;"h/k'"T = 1.2 x 10-5 mls, 

which also implies 4 = m. Checking the validity of the assumption T / T  < 1 

T = pA2/r = 0.0154 < 7. 
gives 

Thus the assumption that experimentally observed fronts correspond to the 
theoretically predicted propagating cells leads to consistent prediction of the 
interface thickness from two separate pieces of experimental data. 
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Propagating fronts in a region of spatially varying fluid conductivity are 
suggestive of similar phenomena observed in poorly conducting fluids with 
thermally induced property gradients (Turnbull 1968 b). Propagation of the 
phases of unstable modes is, similarly, consistent with a bulk-coupled electro- 
hydrodynamic theory (Turnbull 1968a). 

10. Conclusions 
It is important to realize that the theory of the varying-conductivity layer is 

associated with a bulk-coupled instability. An abrupt-discontinuity model can 
never account for this sort of internal instability. In  the language of a surface- 
coupled model, the coupling mechanism is ‘within the interface itself’. Never- 
theless, the constant-conductivity regions bounding the layer are disturbed by 
the instability. That is, the eigenfunctions - potential, current, velocity and 
stress distributions - extend into the bounding regions. Thus the instability 
provides an electrohydrodynamic mechanism for conductivity, mass and 
momentum transport across the layer. 

The unstable nature of the varying-conductivity layer has been further con- 
firmed by bounding it with rigid equipotential walls. 

Experimental studies show evidence of instability on the interfacial scale, 
apparently a manifestation of the physical mechanism described by the theory. 
In  addition, large-scale violent electrohydrodynamic mixing processes dominate 
what is seen at  relatively high values of the electric field. Even in this case, where 
the phenomena are highly nonlinear and complex, photocell measurements con- 
firm that distributions of average fluid properties evolve in time on a scale 
determined by the electric-viscous time r/eE2. 

Both theory and experiment point clearly to important electromechanical 
mechanisms inducing convection in situations involving fluid media with 
conductivity gradients. A fundamental understanding of such interactions is of 
practical importance in electrochemical processing, electrophoretic analysis, and 
electrically driven fluid mixing schemes in general. 

This work was supported by NSF Grant GK-40021. 

R E F E R E N C E S  

BETCHOV, R. & CRIM~ALE, W. 0. 1967 Stability of Parallel Flows, p. 78. Academic. 
LEVICH, V. G. 1962 Physicochemical Hydrodynamics, chap. 2. Prentice-Hall. 
MELCHER, J. R. 1972 Electrohydrodynamics. Applied Mechanics. Proc. 13th I n t .  Cong. 

MELCHER, J. R. & SCHWARTZ, W. J. 1968 Interfacial relaxation overstability in a tangen- 

T U R N B ~ I , ,  R. J. 1968a Electroconvective instability with a stabilizing temperature 

TURNBULL, R. J. 1968 b Electroconvective instability with a stabilizing temperature 

UHL, V. W. & GRAY, J. B. 1966 Mizing Theory and Practice, vol. I ,  chap. 1. Academic, 
WOODSON, H. H. & MELCHER, J. R. 1968 Electromechanical Dynamics.  Part 11. Fields. 

Theor. A p p l .  Mech., Moscow, pp. 240-263. Springer. 

tial electric field. Phys.  FZuids, 11, 2604-2616. 

gradient. I. Theory. Phys.  Fluids ,  11, 2588-2596. 

gradient. 11. Experimental results. Phye. Fluids ,  11, 2597-2603. 

Forces, and Motion, p. 383. Wiley. 



Journal of Fluid M e c h m i c s ,  Vo1. 7 3 ,  part 2 Plate 1 

(4 0 s ( I . )  83.3 s (m) 166.7 s (n) 333.3 s (0) 500 s 

FIGURE 2. Photograplix of fluid-corriporierit, distrihntioris i n  c.sperirnetital ccll. Tiin(% 
intervals amre scaled to  1//C2. The upper fluid is more condiicting. Sequelice (rc)-(e) : 
E = 2.42 x 10a V/m: interface diffiised 1 11.  Scqnc'nce ( f ) - ( j ) :  lG = 1.41 x LO4 V/ni; inter- 
face diffuscd 111. Sequrnce ( k ) - ( o ) :  E = 1.82 x 1V V/m: intorfar(: diffused 4 1 1 .  

(a> (b) 
FIGURE 3. Photograplis of fluid-component' distrihutioris in experimental ccll at relat,ively 
high elect,ric fields. The lower fluid is inore conducting. ( a )  E = C,.O(i x lo4 V/m; t = 60 s. 
( b )  E = 6.06 x lo5 V/m; t = 60 s. 
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